
Simplex with Sum of Infeasibilities for SMT
Tim King∗

∗New York University

Clark Barrett∗ Bruno Dutertre†

†SRI International

Abstract—The de facto standard for state-of-the-art real and
integer linear reasoning within Satisfiability Modulo Theories
(SMT) solvers is the Simplex for DPLL(T) algorithm given by
Dutertre and de Moura. This algorithm works by performing a
sequence of local optimization operations. While the algorithm
is generally efficient in practice, its local pivoting heuristics
lead to slow convergence on some problems. More traditional
Simplex algorithms minimize a global criterion to determine the
feasibility of the input constraints. We present a novel Simplex-
based decision procedure for use in SMT that minimizes the sum
of infeasibilities of the constraints. Experimental results show that
this new algorithm is comparable with or outperforms Simplex
for DPLL(T) on a broad set of benchmarks.

I. INTRODUCTION

The simplex algorithm introduced by Dutertre and de Moura
in [1] for use in the DPLL(T) framework is the core reasoning
module for linear arithmetic in nearly every state-of-the-art
Satisfiability Modulo Theories (SMT) solver including CVC4,
MathSAT, OpenSMT, SMTInterpol, Yices, and Z3 [2], [3],
[4], [5], [6]. The algorithm—which we will call SIMPLEX-
FORSMT—relies on specific pivoting heuristics to search for a
satisfying model or a conflict. Many pivot choices are possible
and those choices can dramatically change the search for a
solution. The heuristic pivot selection scheme that many SMT
solvers use is based on local criteria and is potentially subject
to cycling: it may return to the same basis state infinitely
often. Solvers employ tactics to detect cycling, and slowly
edge towards pivot-selection rules that guarantee termination,
such as Bland’s Rule [7], [8], [9]. Unfortunately, Bland’s rule
converges very slowly and is not effective on hard problems
that require many pivots.

Before SIMPLEXFORSMT, earlier simplex-based ap-
proaches for SMT used repeated optimization (via an algo-
rithm like PRIMAL in Section III) as constraints arrived [15],
[16], [17]. Since its initial publication, little work has been
published on directly improving the simplex solver itself.
Griggio’s thesis [13] gives a number of details on implemen-
tation and additional pivoting heuristics. Most recent work on
QF_LRA has focused on combining floating point and exact
precision solvers [18], [19], [20].

In the more traditional setting, Simplex is used to minimize
(or maximize) a linear function f . Throughout execution of
the Simplex algorithm, the value of f never increases. As
long as f strictly decreases, no cycling is possible. Thus,
specialized techniques to prevent cycling are only required to
break out of sequences of degenerate pivots, that is, pivots that
do not change f . Procedures can then be designed around two

different modes: a heuristic mode that is efficient in practice,
and a mode for escaping degeneracy.

This paper proposes an adaptation for SMT of the sum-
of-infeasibilities method from the Simplex literature [7], [8].
We call this method SOISIMPLEX. Minimizing the sum-of-
infeasibilities provides a witness function similar to f which
accomplishes several things at once: it helps guide the search
towards both models and conflicts; it prevents cycling; and it
can be used to determine when to safely re-enable aggressive
heuristics without losing termination.

In other aspects, SOISIMPLEX is similar to the SIMPLEX-
FORSMT algorithm, providing similar features and having
similar performance on many problems. However, its perfor-
mance is noticeably better on certain problem instances that
require many pivots.

The rest of the paper is organized as follows. Section II
covers basic background material on SMT, DPLL(T), and
linear real arithmetic. Section III describes a naive traditional
primal simplex optimization routine. Section IV gives a de-
scription of SIMPLEXFORSMT. Section V then describes the
new SOISIMPLEX algorithm. Empirical results are given in
Section VI, and Section VII concludes.

II. BACKGROUND

The basic SMT problem is to determine whether a formula
is satisfiable with respect to some fixed first-order theory T .
Modern SMT solvers rely on an architecture called DPLL(T)
which integrates a fast SAT solver with one or more theory
solvers for specific first-order theories [10]. The SAT solver
reasons about the Boolean skeleton of the formula, allowing
the theory solvers to reason only about conjunctions of literals
in their theory. This paper’s main concern is a novel theory
solver for quantifier-free linear real arithmetic (QF_LRA).

A formula in QF_LRA is a Boolean combination of atoms
of the form

∑
cj · xj ./ d, where cj , d are rational, ./∈

{=,≤,≥}, and V = {x1, x2, . . . , xn} is a set of variables.
By using simple transformations [1], the set of constraints
presented to a QF_LRA theory solver can always be written
as: TV = 0 ∧ l ≤ V ≤ u, where T is a matrix, and l and u
are vectors of lower and upper bounds on the variables. We
will refer to the entry in row i and column j of T as ti,j ,
and use ri to denote the i-th row of T . We further use l(x)
and u(x) to denote the lower and upper bound on a specific
variable x. If x has no lower (upper) bound, then l(x) = −∞
(u(x) = +∞). The theory solver searches for an assignment
a : V 7→ R that satisfies the constraints. If no such assignment

1: procedure UPDATE(j, δ)
2: a(xj)← a(xj) + δ
3: for all i|ti,j 6= 0 do
4: a(xi)← a(xi) + ti,j · δ

(a) Changing a(xj) by δ (xj ∈ N)

1: procedure PIVOT(i, j)
2: rj ← rj − 1

ti,j
· ri

3: for all k|tk,j 6= 0 ∧ k 6= j do
4: rk ← rk + tk,j · rj
5: B ← (B − {bi}) ∪ {xj}
6: N ← V \ B

(b) Pivot bi and xj (ti,j 6= 0)

1: procedure UPDATEANDPIVOT(j, δ, i)
2: UPDATE(j, δ)
3: if i 6= j then
4: PIVOT(i, j)

(c) Composing Update and Pivot

Fig. 1: Algorithms for maintaining Ta = 0

exists, the theory solver must detect a conflict and provide
an explanation (cf. [10], [1]), an infeasible subset (preferably
small) of the set of constraints presented to the theory solver.

In all of the algorithms in this paper, we assume T is an n×
n matrix in tableau form: the variables V are partitioned into
the basic variables B and nonbasic variables N (to emphasize
when a variable xi is basic, we will write bi as a synonym
for xi when xi ∈ B), and the i-th row of T is all zeroes iff
xi ∈ N . Furthermore, for each column i such that xi ∈ B, we
have tk,i = 0 for all k 6= i and ti,i = −1. Thus, each nonzero
row ri of T represents a constraint bi =

∑
xj∈N ti,j · xj . It

is sometimes convenient to use the matrix obtained by adding
the identity matrix to T . We define τ = T + I and refer to
the entry in row i and column j of τ as τi,j . Note that on the
diagonal, τi,i = 0 for bi ∈ B and τj,j = 1 for xj ∈ N (off
the diagonal, τi,j = ti,j). The column length for a variable
xj , denoted by |Col(j)|, is the number of nonzero entries in
column j.

The algorithms in this paper work by making a series
of changes to an initial assignment a until the constraints
are satisfied or determined unsatisfiable. During this process,
Ta = 0 is an invariant. To initially satisfy this invariant, one
can set a(xi) = 0 for all xi ∈ V . To maintain the invariant,
whenever the assignment to a nonbasic variable changes, the
assignments to all dependent basic variables are also updated
(Fig. 1a). The main ingredient of Simplex-based procedures
is the pivoting operation shown in Figure 1b. Pivoting takes a
basic variable bi and a nonbasic variable xj such that ti,j 6= 0,
and swaps them: after pivoting, xj becomes basic and bi
becomes nonbasic. Figure 1c gives the composition of the
update and pivot operations, UPDATEANDPIVOT.

1: procedure PRIMAL(f)
2: while Flex(f) 6= ∅ do
3: UPDATEANDPIVOT(PRIMALSELECT())

4: return a(f)

(a) PRIMAL(f) with a generic selection routine

1: procedure PRIMALSELECT
2: S ← ∅
3: for all xj ∈ Flex(f) do
4: S ← S ∪ 〈j, k〉, where 〈| δB(j, k)|, k〉 is minimal
5: select 〈j, k〉∈S minimizing 〈−| sgn(δB(j, k))t0,j |, j〉
6: return 〈j, δB(j, k), k〉

(b) PRIMALSELECT with a terminating variant of Dantzig’s rule

Fig. 2: Primal Simplex

III. NAIVE PRIMAL SIMPLEX

The classic problem in linear optimization is to find an
assignment a that satisfies the linear equalities Ta = 0
and the bounds l ≤ a ≤ u, and that minimizes a linear
function f =

∑
xk∈V ck · xk. The problem can be solved

with the PRIMAL Simplex algorithm shown in Figure 2. It is
typical to assume that the algorithm is given an initial feasible
assignment as input, so that both Ta = 0 and l ≤ a ≤ u are
initially satisfied.

The optimization function f is treated as a special additional
variable f = x0 =

∑
xk∈V ck · xk. We add a row and column

to T (for convenience, at the top and left, indexed by 0), with
t0,j = cj , for 1 ≤ j ≤ n, ti,0 = 0, 1 ≤ i ≤ n, and t0,0 = −1.
The entries in the new row corresponding to basic columns
can be set to zero using matrix row additions (as is done in
PIVOT). We can then treat f (which we use as another name
for x0 below) as a basic variable with no bounds. (Note that
to instead maximize f with the same machinery, we simply
minimize its negation −f .)

Every round of PRIMAL begins by checking whether or not
f is currently at its minimum. This is done by looking at the
assignments to each nonbasic variable on f ’s row. The value
of xj that minimizes f–call this vj–is u(xj) if t0,j is negative
and l(xj) if t0,j is positive (ignoring other constraints). If
a(xj) = vj for each nonbasic variable xj on f ’s row (where
t0,j 6= 0), then the current value of f , a(f), must be the
minimum because we can prove f ≥ a(f) as follows:

f =
∑
τ0,j>0

t0,jxj +
∑
τ0,k<0

t0,kxk

≥
∑
τ0,j>0

t0,j l(xj) +
∑
τ0,k

t0,ku(xk)

=
∑
τ0,j>0

t0,ja(xj) +
∑
τ0,k<0

t0,ka(xk) = a(f)

(1)

The search can then terminate. Otherwise, there is some xj on
f ’s row s.t. a(xj) 6= vj , and it is unclear whether a(f) is at
a minimum. By trying to change a(xj) for these xj , we can
at the same time hunt for an assignment that decreases a(f)

and search for a proof of optimality. We will call the non-
basic variables on f ’s row whose assignments are not at their
relevant bounds the flexible variables for this row. The set of
flexible variables for an arbitrary basic variable bi is denoted
Flex(d, bi) where d is a directional rational that is used as an
implicit multiplier:

Flex(d, bi) = {xj |d · τi,j > 0 ∧ a(xj) > l(xj)}∪
{xk|d · τi,k < 0 ∧ a(xk) < u(xk)}

(2)

The parameter d allows us to choose whether to minimize
or maximize bi and will be discussed further in Sections IV
and V. When d = 1 (as it always is in this Section), we will
drop the first argument to Flex as a notational convenience.
Thus, f is at its minimum when Flex(f) = ∅.

To decrease the value of a(f), we choose some xj ∈
Flex(f) and determine an appropriate δ for UPDATE(xj , δ)
(we discuss the strategy for picking xj below). The direction
in which we attempt to move a(xj) is determined by t0,j :
if t0,j < 0, then we want δ ≥ 0 and if t0,j > 0, then we
want δ ≤ 0. Since the UPDATE operation must maintain the
invariant l ≤ a ≤ u, the value of δ is constrained by the
bounds on xj : l(xj) ≤ a(xj) + δ ≤ u(xj). Also, for every bi
that depends on xj , the value a(bi) must stay within bounds:
l(bi) ≤ a(bi) + ti,j · δ ≤ u(bi). These cases can be unified
using τ : for all k, l(xk) ≤ a(xk) + τk,j · δ ≤ u(xk).

PRIMAL always considers UPDATE(j, δ) operations that are
maximal: the value of δ is selected so that at least one
variable’s assignment is pushed against its bound (any larger
change would violate the bound). For each k, the candidate
value for δ is the one that sets xk equal to one of its bounds
(which bound is determined by the sign of δ and the sign of
τk,j). We call these candidate values for δ the break points of
xj . Formally, let δU(j, k, α) be the amount xj must change in
order to make xk equal to α after an UPDATE:

δU(j, k, α) =
1

τk,j
(α− a(xk)) , and

δB(j, k) =


δU(j, k, l(xk)) t0,j · τk,j > 0

δU(j, k, u(xk)) t0,j · τk,j < 0

undefined otherwise

The break points for xj are all defined values of δB(j, k).
In PRIMAL, for each j, we simply select k to minimize

| δB(j, k)| (ties can be broken by picking the minimum k).
The operation UPDATE(j, δB(j, k)) then maintains the in-
variant that no variable violates its bound. Additionally, the
assignment to xk is guaranteed to be pressed up against
its bound. When j 6= k, xk is a basic variable, so we
can allow for (potential) future progress by pivoting xk
out of the basis and replacing it with xj . The operation
UPDATEANDPIVOT(j, δB(j, k), k) then maintains both the in-
variant Ta = 0 and l ≤ a ≤ u.1 Because xk leaves the basis,
our strategy of minimizing | δB(j, k)| to select k is called a

1When k = j, UPDATEANDPIVOT(j, δB(j, j), j) corresponds to an update
without a pivot.

leaving rule. By always selecting updates like this, PRIMAL
ensures that a(f) monotonically decreases.

We have just described a rule for selecting xk given xj ,
but we need an entering rule for selecting xj . A simple way
to ensure termination is to select the entering variable xj
with the smallest index j. This style of selecting entering and
leaving variables is called Bland’s rule in the literature, and
its termination is a classic result of linear programming [9],
[8], [7]. A better heuristic is to select xj so as to maximize
the value of |t0,j |. This is called Dantzig’s rule.2

The algorithm PRIMAL(f) in Figure 2 is a minimization
routine that repeatedly selects an update and pivot until
Flex(f) is empty and then returns the minimum value found
for f .3 The selection procedure uses a terminating variant of
Dantzig’s rule (it follows Dantzig’s rule as long as δB(j, k) is
nonzero, otherwise it follow’s Bland’s rule). Note that when
δB(j, k) 6= 0, the value of f strictly decreases, which makes it
impossible to return to any previous state (as all previous states
had larger values of f). Thus, the presense of a minimization
function makes it easier to rule out cycles (the source of
nonterminating runs). Termination only needs to be addressed
for cases when f gets stuck and stops decreasing.

IV. SIMPLEX FOR DPLL(T)

The SIMPLEXFORSMT algorithm from [1] is tightly tuned
to the DPLL(T) framework. It is designed to support incre-
mental processing of arithmetic literals and efficient backtrack-
ing, and it computes minimal explanations in case of conflicts.
Strict inequalities are encoded using an implicit infinitesimal
variable δ (see [1] for details on δ-rationals).

In the DPLL(T) framework, a SAT solver incrementally
sends theory literals to the theory solver. Periodically, it
queries the solver about the current set of literals, expecting
that the solver will either report satisfiable (with a satisfying
assignment) or unsatisfiable (with a conflict). With appropri-
ate preprocessing, we can assume that the linear equalities
Ta = 0 are fixed (modulo pivoting) from the beginning,
that all variables are initially unbounded, and that the theory
literals sent by the SAT solver are of the form xi ≤ c or
xi ≥ c. The literals sent thus determine the bound constraints:
l ≤ V ≤ u. As in PRIMAL, the invariant Ta = 0 is always
maintained. This is done by starting with a(x) = 0 for all x
and by using only UPDATE to change variable assignments.
The main job of SIMPLEXFORSMT then is to modify the
current assignment using UPDATE until it satisfies the bounds
or report a conflict if this is impossible. This is done by the
SIMPLEXFORSMTCHECK routine shown in Figure 3.

This routine focuses on searching for an assignment a that
satisfies l ≤ a ≤ u. We say that x is an error variable if a
violates one of the bounds on x, and we denote by E the set

2Dantzig’s rule tends to be dominated in practice by more sophisticated
rules such as steepest gradient descent [9], [8], [7].

3For the purposes of this paper, we have ignored unbounded problems, i.e.
problems where a(f) can take on arbitrarily low values [9], [8], [7]. To handle
this case, change the while loop condition additionally to stop once a(f) is
set to −∞.

of error variables. Let Vio(x) denote the amount by which x
violates its bound:

Vio(x) =


l(x)− a(x) a(x) < l(x)

a(x)− u(x) a(x) > u(x)

0 otherwise

(3)

Thus, Vio(x) is nonnegative and piecewise linear, and x
satisfies its bounds iff Vio(x) = 0. Finding a satisfying
assignment requires reducing each Vio(xi) to 0. Locally,
minimizing a Vio(xi) is equivalent to minimizing di ·xi where
di is 1 if a(x) > u(x), -1 if a(x) < l(x), and 0 otherwise.

In Fig. 3, the first loop ensures that the nonbasic variables
satisfy their bounds (lines 3-4). The main work of the routine
is the second loop which focuses on finding updates to basic
variables that are in E. When E = ∅, the current assignment is
feasible and the search stops. Otherwise, there is some bi ∈ E.

The set Flex(di, bi) contains the nonbasic flexible variables
of row i that enable the function di · bi to decrease. If
Flex(di, bi) is nonempty, then a variable xj ∈ Flex(di, bi)
is chosen; bi is pivoted with xj ; and the assignment to xj is
updated enough to move bi to its violated bound. Let VB(bi)
denote the violated bound on bi (either l(bi) or u(bi)). Then for
xj ∈ Flex(di, bi), the operation UPDATE(j, δU(j, i,VB(bi)))
will set a(bi) to the violated bound.

If Flex(di, bi) is empty, then the bounds on the nonbasic
variables on bi’s row imply that di · bi is at a minimum value
so there is no way to satisfy di · bi ≤ di · VB(bi) without
violating some other bound. Thus, the current set of bounds
is unsatisfiable. We can compute an explanation by collecting
all of the contributing bounds on row i:∧
di·τi,j>0

xj ≥ l(xj) ∧
∧

di·τi,k<0

xk ≤ u(xk) ∧ di · bi ≤ di ·VB(bi)

We denote the conflict explanation generated in this fashion
as RC(i). This explanation is minimal (if any constraint is
removed, the remaining constraints are satisfiable) [11]. Upon
detection, the row conflicts are added to the set of conflicts C.

To ensure termination, it is sufficient to always select the
minimum bi ∈ E to leave the basis, and the minimum
xj ∈ Flex(di, bi) (a variation of Bland’s rule). However,
the dominant heuristic in state-of-the-art implementations of
SIMPLEXFORSMT is to instead select the xj ∈ Flex(di, bi)
with minimum column length |Col(j)|. This heuristic works
quite well in practice but is not guaranteed to terminate. (The
function Vio(bi) will decrease to 0 for bi but it may increase
for other basic variables or for xj .) A simple means of ensuring
termination is to count the number of pivots and switch to
Bland’s rule once this passes a finite cap, This strategy is
shown in Figure 3. The variable pc is the pivot count and,
once pc reaches some threshold H, the pivot selection heuristic
switches to Bland’s rule. This strategy or slight variations
of it are currently used by default in CVC4, MathSat [13],
OpenSMT [14], Yices, Yices 2, and Z3 [12].

An improvement to the algorithm (and a contribution of
this paper) can be obtained by implementing a more aggres-
sive conflict detection. Instead of only checking the row of

1: procedure SIMPLEXFORSMTCHECK
2: pc← 0
3: while ∃xj ∈ N ∩ E do
4: UPDATE(xj ,−dj ·Vio(xj))

5: while E 6= ∅ ∧ C = ∅ do
6: UPDATEANDPIVOT(SIMPLEXFORSMTSELECT())
7: pc← pc +1

8: return C = ∅ ? Sat(a) : Unsat(C)
9: procedure SIMPLEXFORSMTSELECT

10: select bi from E to minimize i
11: CHECKFORCONFLICT(i)
12: if C 6= ∅ then
13: return 〈i, 0, i〉
14: h← pc < H ? 1 : 0
15: select xj from Flex(di, bi) to minimize 〈h·|Col(j)|, j〉
16: return 〈j, δU(j, i,VB(i)), i〉
17: procedure CHECKFORCONFLICT(i)
18: if Flex(di, bi) = ∅ then
19: C ← {RC(i)}

Fig. 3: Check procedure for SIMPLEXFORSMT; uses a ter-
minating selection rule and a procedure for detecting conflicts
on row i

1: procedure CHECKALLCONFLICTS
2: for all i|1 ≤ i ≤ n do
3: if conflict on row i then
4: C ← C ∪ {RC(i)}

Fig. 4: Procedure that checks for all conflicts

the first basic variable in error for a conflict, all rows are
checked for conflicts. This variation (a replacement for the
CHECKFORCONFLICT(I) procedure in Fig. 3 is shown in
Figure 4. To implement this efficiently, we keep track of the
size of Flex(±1, bi) for all bi ∈ B. These counts depend on
the coefficients ti,j , and the relationships a(xj) < u(xj) and
a(xj) > l(xj). The bookkeeping for keeping these counts
accurate is amortized into the theory solver operations. Con-
flict detection then amounts to checking when |Flex(di, bi)|
is 0 for bi ∈ E. (Only bi that were affected in the previous
iteration need to be tested for conflicts.) An evaluation of
SIMPLEXFORSMT with and without this optimization (using
CVC4) showed a 46% speedup on the QF_LRA SMT-LIB
benchmarks. This optimization is on by default in CVC4.

V. SUM OF INFEASIBILITIES SIMPLEX

In this section, we introduce a Simplex-based theory solver
for QF_LRA which we call SOISIMPLEX. Like SIMPLEX-
FORSMT in the previous section, it is designed to search for
both conflicts and satisfying assignments in the context of a
DPLL(T) search. It attempts to address the troubling lack of
a straightforward global criterion for progress in SIMPLEX-
FORSMT by introducing a function to minimize. The function
minimized is the sum of infeasibilities of all of the variables.

1: procedure SOICHECK
2: while ∃xj ∈ N ∩ E do
3: UPDATE(xj ,−dj ·Vio(xj))

4: while Flex(f) 6= ∅ ∧ C = ∅ do
5: UPDATEANDPIVOT(SOISELECT())

6: if C 6= ∅ then
7: return Unsat(C)
8: else if E = ∅ then
9: return Sat(a)

10: else
11: return Unsat(SoiQE) (Sec. V-B)
12: procedure SOISELECT
13: CHECKALLCONFLICTS()
14: if C 6= ∅ then
15: return 〈1, 0, 1〉
16: S ← ∅
17: for xj ∈ Flex(f) do
18: L← ∅
19: for all k|k = j ∨ tk,j 6= 0 do
20: L← L∪{〈δU(j, k, l(xk)), k〉}
21: L← L∪{〈δU(j, k, u(xk)), k〉}
22: select 〈δ, k〉 ∈ L to minimize 〈∆Vio(j, δ), |δ|, k〉
23: S ← S ∪ 〈j, δ, k〉
24: select 〈j,δ,k〉∈S minimizing 〈sgn(∆Vio(j, δ))·|t0,j |, j〉
25: return 〈j, δ, k〉

Fig. 5: SOICHECK and selection rules for SOISIMPLEX

For a given assignment, the sum of infeasibilities is given by:
Vio(V) =

∑
x∈V Vio(x). Let VioF be the result of replacing

a(x) by x in the definition of Vio. The optimization function
can be written as: VioF (V) =

∑
x∈V VioF (x). Minimizing

the sum of infeasibilities is a standard technique for finding
an initially feasible assignment for linear programs [7], [8].

We assume the same setup as in the previous section: we
start with a fixed (modulo pivoting) tableau and a satisfying as-
signment a, and then the SAT solver sends a set of literals that
determine the upper and lower bounds for the variables. The
theory solver must provide a check routine that either reports
satisfiable (with a satisfying assignment) or unsatisfiable (with
a conflict). The main loop for SOISIMPLEX uses essentially
the same machinery to minimize VioF (V) as was used in
PRIMAL for minimizing a linear function f . However, there
are a number of complications caused by the fact that VioF (V)
is only piecewise linear instead of linear. The majority of this
section is devoted to handling these challenges.

Because we cannot represent the optimization function
VioF (V) directly in the tableau, we use a linearized ap-
proximation. First note that that Vio(V) =

∑
x∈V Vio(x) =∑

xi∈V di · (a(xi)−VB(xi)). In some neighborhood of a(xi),
the value of di · VB(xi) will be constant. Discarding this
term and replacing a(xi) with xi results in the function
f(V) =

∑
xi∈V di · xi. Note that the function still depends

on the current assignment (which determines di), but for a

given assignment, the function is linear. We can substitute for
the basic variables and rearrange the sums to get:

f =
∑
xj∈N

(∑
xi∈V

diτi,j

)
· xj .

We use this function in roughly the same way we used f
in PRIMAL: it is the 0th variable and it is always basic. To
compute the tableau row for f , we simply compute coefficients
for each nonbasic variable xj by adding, for each row i, the
entry in column j multiplied by the directional multiplier di.
The computed coefficients depend on di and thus have to
be updated every time the assignment changes. This can be
implemented efficiently by instrumenting UPDATE to detect
when di changes to d′i for some i. When this happens, we
update f ’s row (r0) as follows: r0 ← r0 +(d′i−di) ·τi (where
τi is the i-th row of τ).

The check procedure for SOISIMPLEX is given in Fig. 5.
It iterates while: no row contains a conflict (C = ∅), and there
is a nonbasic variable on f ’s row with slack (Flex(f) 6= ∅). If
C 6= ∅, then SIMPLEXFORSMTCHECK safely terminates with
the discovered conflict. If Flex(f) and E are empty, the current
assignment is satisfying. Otherwise, E 6= ∅, Flex(f) = ∅, and
f is at a minimum. Section V-B discusses extracting a conflict
explanation with the SoiQE procedure.

As in the PRIMAL algorithm, the selection procedure iterates
over all xj ∈ Flex(f). The leaving rule considers xj as well
as every basic variable bk where tk,j is nonzero. We consider
two possible updates (break points) for each such variable: one
which sets it to its upper bound and one which sets it to its
lower bound. Unlike PRIMAL, we consider updates for which
some new basic variable could become violated. However,
we still ensure that global progress is made. We denote by
∆Vio(j, δ) the amount that Vio(V) would change if we were
to change the current assignment by executing UPDATE(j, δ).
From all of the possible leaving variables and updates, we then
select the pair for which ∆Vio(j, δ) is minimal (equivalently,
the pair that reduces the value of Vio(V) the most). Section
V-A describes how to efficiently compute the values for
∆Vio(j, δ). We also show in that section that for each xj , there
is always a choice of 〈δ, k〉 such that ∆Vio(j, δ) ≤ 0. This
ensures that Vio(V) monotonically decreases. Tie breaking for
the leaving rule is done by selecting the minimum value of |δ|
and then the minimum variable index k. The motivation for
the former is discussed in subsection V-C.

The entering rule selects between candidate triples 〈j, δ, k〉
for xj ∈ Flex(f). Any triple for which ∆Vio(j, δ) is negative
ensures that SOISIMPLEX is making progress. This allows for
SOISIMPLEX to treat Vio(V) in a manner analogous to a(f)
in PRIMAL. Following our modified Dantzig’s rule, we select
the entering variable with the largest coefficient so long as
it decreases Vio(V) with ties being broken by selecting the
variable with the smaller index.

We show how SOISIMPLEX works using the simple exam-
ple shown in Fig. 6. With the given assignment, the bound
x1 ≥ 3 is violated, and Vio(V) = 2. The variable x2 is

T : f = −2 · x2 + x3
x1 = 2 · x2 − x3

0 δ

Vi
o(

V
)

3 ≤ x1 ≤ 7 a(x1) = 1
x2 ≤ 3 a(x2) = 1

1 ≤ x3 a(x3) = 1

Fig. 6: Simple example showing Vio(V) after UPDATE(x2, δ)

flexible, and we examine it for updates. The break points for
x2 are at δ ∈ {1, 2, 3}, and correspond to changes to x2 that
respectively set x1 to its lower bound, x2 to its upper bound,
and x1 to its upper bound. Figure 6 shows how the value
of Vio(V) changes if x2 is updated by δ. For δ ∈ {1, 2},
∆Vio(2, δ) = −2 and Vio(V) will become 0. Because of the
tie-break on |δ|, the pair 〈δ.k〉 = 〈1, 1〉 is selected, and then
the triple 〈2, 1, 1〉 is returned. After the call to UPDATE, the
algorithm terminates with a satisfying solution.

A. Computing ∆Vio(j, δ)

To implement line 22 of SOISELECT, we must compute the
values of ∆Vio(j, δ) for every break point δ. We use the fact
that the function VioF is linear between break points and that
the slopes of these linear segments can be computed. Let ∆
be a increasing sorted list of the positive δ values in L, and
let δ0 = 0: 0 = δ0 < δ1 < Let κi be the set of values
of k that are paired with δi in L. We proceed as follows. We
know that ∆Vio(j, 0) = 0 and that the slope β0 as δ increases
from 0 is t0,j . Now, we can compute:

∆Vio(j, δi) = ∆Vio(j, δi−1) + βi−1 · (δi − δi−1).

Furthermore, we know that at δi, each variable xk (for
k ∈ κi) transitions to satisfying its bound or violating its
bound, meaning that dk will change at δi to some d′k. This
change can be used to compute the slope βi for the next
segment: βi = βi−1 +

∑
k∈κi

(d′k − dk) · τk,j . Continuing this
walk over increasing values of δ computes ∆Vio(j, δ) for all
δ ≥ 0. Another analogous pass can be done to compute the
∆Vio(j, δ) values for negative δ values. A number of nice
properties follow from the above computation, including the
the following lemma:

Lemma 1. For each xj ∈ Flex(f), there is some pair 〈δ, k〉 ∈
L such that ∆Vio(j, δ) ≤ 0.

Proof. If δ = 0 is a break point, then ∆Vio(j, 0) ≤ 0. Now
assume 0 is not a break point. The xj’s considered are on
f ’s row so t0,j 6= 0. If t0,j > 0, there must exist some
di · τi,j > 0. So there exists a negatively-valued break point,
δU(j, i,VB(i)). Let δ be the negative break point closest to
0. We know that ∆Vio(j, δ) = 0 + t0,j · δ < 0. Similarly, if
t0,j < 0, then ∆Vio(j, δ) < 0 for the minimal positive δ.

The proof further suggests that it is sufficient to consider either
just the negative or just the positive values of δ (depending on
the value of t0,j) without affecting correctness.

B. Conflicts with Multiple Rows

If Flex(f) = ∅, C = ∅ (i.e. no single row produces a
conflict) but E 6= ∅, we can still detect a conflict and derive an
explanation as follows. Similar reasoning to that in (1) can be
used to show that the sum of the assignments for the variables
in E is strictly greater than the sum of their violated bounds:∑

bi∈E

di · a(bi) >
∑
bi∈E

di ·VB(i).

So the bounds on the nonbasic variables in f ’s row and
the basic variables in error cannot together be satisfied. This
allows us to extract the following conflict explanation:∧
τ0,j>0

xj ≥ l(xj) ∧
∧

τ0,k<0

xk ≤ u(xk) ∧
∧
bi∈E

dibi ≤ di VB(i)

Explanations constructed like this may not be minimal. How-
ever, we observe that for any subset S of E, if we con-
struct the function fS =

∑
xj∈N

(∑
bi∈S di · ti,j

)
· xj , and

Flex(fS) = ∅, then we can extract a smaller explanation using
only the rows corresponding to basic variables in S. We use
a number of heuristics and a straightforward adaptation of the
QuickXplain algorithm [21] to attempt to find a minimal subset
S that still generates a conflict (without additional Simplex
search). Most of the time a conflict can be found with |S| = 2.
In this case, the explanation is guaranteed to be minimal.

C. Termination

The termination of SOISIMPLEX is again based on the
termination of Bland’s rule. Suppose that SOISIMPLEX does
not terminate. There are only a finite number of possible
assignments that can be considered as the number of variables
is finite, and every change to the assignment assigns a variable
xj to either u(xj) or l(xj). Because the value of Vio(V) is
determined by the assignment and monotonically decreases,
any nonterminating execution must have an infinite tail during
which Vio(V) is unchanged and the update selected, 〈j, δ, k〉
is such that ∆Vio(j, δ) = 0. As was shown in the proof of
Lemma 1, if the minimal ∆Vio(j, δ) found is 0, then δ = 0
must be a break point. The leaving rule enforces that the δ
selected minimizes the tuple 〈∆Vio(j, δ), |δ|, k〉. So in the tail
of a nonterminating execution ∆Vio(j, δ) = 0 and δ = 0 at
every step. Thus after this point, no variable is changing in as-
signment and no variable changes its relationship to its bounds.
Every leaving and entering variable is then selected based
on picking the minimum index. The argument that PRIMAL
cannot cycle under Bland’s rule can then be directly applied.
We refer readers interested in the proof of the termination of
Bland’s rule to [7], [8], [9].

D. Heuristics and Vio(V)

Instead of examining all xj ∈ Flex(f) for the best
candidate, we can instead just look at heuristically many
candidates. The search can stop once a candidate has been
found that makes progress (i.e. ∆Vio(j, δ) < 0). Further, there
is more freedom in selection heuristics than we have shown
here. In particular, one can use any heuristic desired until no

progress has been made for a while. CVC4’s implementation
for example uses a heuristic that prefers shorter columns until
progress stalls and then uses Bland’s rule.

During the calculation of break points, it is possible to
determine if pivoting xj with bi would result in a row conflict
on xj’s new row in O(1) time by using the |Flex(±1, bi)|
values. Such selections are always prefered. CVC4’s selection
also heuristically prefers the set E to be as small as possible.

VI. EXPERIMENTAL RESULTS

In this section we describe two experiments. In the first,
we compare CVC4 against itself using two different sets of
options.4 The first set of options uses the default solver, an
implementation of SIMPLEXFORSMT (which is a bit better
than the version that won the QF_UFLRA division—which
includes QF_LRA—of SMT-COMP 2012 [22]). The second
set of options enables a new implementation of SOISIM-
PLEX. The two configurations of CVC4 are run with most
other heuristics disabled so that the comparison is an ac-
curate reflection of the performance of the two algorithms
as described in this paper.5 The comparison is done on the
QF_LRA benchmarks from the SMT-LIB library [23] as well
as a new family of benchmarks from biological modeling,
latendresse [24]. The latendresse family of bench-
marks is a set of problems that originated from an analysis of
biochemical reactions using the flux-balance analysis method.6

The miplib and latendresse families are of particular
interest as they contain the only timeouts in these experi-
ments. These problems are characterized by relatively little
propositional structure, and a large and relatively dense input
tableau. All of the experiments were conducted on a 2.66GHz
Core2 Quad running Debian 7.0 with a time limit of 1000
seconds. Every example stays below a memory limit of 2GB.
Overall, SOISIMPLEX solves 636 while SIMPLEXFORSMT
solves only 629. Interestingly, SOISIMPLEX is slightly slower
on the SMT-LIB benchmarks (see Fig. 7), and even solves
one fewer benchmark (the satisfiable miplib benchmark
fixnet-7000.smt2), but solves all of the latendresse
benchmarks while SIMPLEXFORSMT times out on 8 of them.

To understand these results better, we recorded how many
pivots were done (for both algorithms) during each call to
the respective check routines (for benchmarks that both al-
gorithms are able to solve). For the SMT-LIB benchmarks,
almost all queries sent to the theory solver are “easy” for the
simplex solvers (both SIMPLEXFORSMT and SOISIMPLEX).
Table I shows, for given numbers of pivots (or ranges of
numbers of pivots), the number of calls to check whose
pivot count is in that range. The maximum number of pivots
for any single call to check is 2238. The number of pivots

4Experiments were run using the submission to SMT-EVAL 2013: CVC4
version 1.2, available at github.com/CVC4/CVC4/tree/smteval2013.

5Both solvers are run with --new-prop --no-restrict-pivots.
SOISIMPLEX is run with the additional flag --use-soi. The
--no-restrict-pivots flag disables stopping simplex after K
pivots at non-leaf SIMPLEXFORSMTCHECK calls (K = 200 by default).

6These benchmarks are available at cs.nyu.edu/∼taking/soi.tgz and have
been submitted for inclusion into SMT-LIB’s QF_LRA family.

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

C
V

C
4

 S
O

IS
im

p
le

x

CVC4 SimplexForSMT

Fig. 7: Log-scaled running times (sec.) for experiment 1 on
the QF_LRA benchmarks from SMT-LIB.

is generally very low and on average, SOISIMPLEX uses
fewer pivots than SIMPLEXFORSMT. The 8 timeouts by
SIMPLEXFORSMT on latendresse have a very different
signature. Each of them times out in the middle of a very
long SIMPLEXFORSMTCHECK call performing thousands of
pivots. On average, the interrupted SIMPLEXFORSMTCHECK
routines had performed 18263 pivots and had been running
937s [/1000s]. This first experiment confirms our expectation
that SOISIMPLEX is effective at reducing the number of pivots
required to solve a problem.

For the second experiment, we compare the same two
algorithms in CVC4 against a number of state-of-the-art
QF_LRA solvers. For this experiment, we enable a number
of additional CVC4 options (those used in the SMT-EVAL
2013 run script) which are beyond the scope of this paper and
which significantly improve performance (for both algorithms)
on the miplib and latendresse benchmarks. These are
disabled in the first experiment to better understand the relative
strengths of the two algorithms on their own. The other solvers
we compare with are: Z3 4.1.2 [4], mathsat 5.2.3 [3], yices
2.1.1, and OpenSMT 1.0.1[6]. Table II contains a summary
of the number of problems solved by each solver and the
cumulative time taken on the solved instances for the three
families of benchmarks: all SMT-LIB QF_LRA benchmarks,
the miplib family from QF_LRA, and the latendresse
benchmarks.7 The second experiment shows that the strongest
overall solving strategy is obtained by using SOISIMPLEX.

7OpenSMT gave no answer on the latendresse benchmarks.

Range for n 0 1 [2, 10] [11, 100] [101, 1000] [1000, 2238] total
Number of calls to SIMPLEXFORSMTCHECK with n pivots 32832424 645473 896659 174743 2362 7 34551668∑

Total number of pivots performed by these calls 0 645473 3677258 3628577 479386 10173 8440867

Number of calls to SOICHECK with n pivots 30475287 924639 1008398 130167 655 0 32539146∑
Total number of pivots performed by these calls 0 924639 3900190 2366117 126506 0 7317452

TABLE I: Number of pivots per call to check for experiment 1.

CVC4 SOISIMPLEX CVC4 SIMPLEXFORSMT Z3 yices2 mathsat opensmt
set solved time (s) solved time (s) solved time (s) solved time (s) solved time (s) solved time (s)

QFLRA (634) 627 5621.29 625 5523.15 620 5582.46 619 5300 608 8043 597 17261
miplib (48) 35 641.3 33 1760 28 1158.42 27 1616 19 3049 21 1509
latendresse (18) 18 883.53 18 205 8 17.98 10 103.38 10 94.73 - -

TABLE II: Running time and number of problems solved for experiment 2.

VII. CONCLUSION

The authors believe these experiments demonstrate both the
strength and weakness of SIMPLEXFORSMT’s local optimiza-
tion criteria. It is good at keeping the amount of work small in
the context of a DPLL(T) style search. The local optimization
criteria requires little analysis and is quite an efficient heuristic
for many SMT problems; however, its global convergence is
questionable on large and hard examples. SOISIMPLEX adds
a global optimization criterion and appears to be more robust
for large and hard examples, but this comes with the cost of
some additional analysis during pivot selection. Future work
will explore how to heuristically take advantage of the best
characteristics of both algorithms.

ACKNOWLEDGEMENTS

We’d like to thank the other members of the NYU ACSys
research group for their many contributions to CVC4. This
work was funded in part by NSF Grants CCF-0644299, CNS-
0917375, and NASA Cooperative Agreement NNA10DE73C.

REFERENCES

[1] B. Dutertre and L. de Moura, “A fast linear-arithmetic solver for
DPLL(T),” in CAV 2006, LNCS 4144. Springer-Verlag, August 2006,
pp. 81–94.

[2] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King,
A. Reynolds, and C. Tinelli, “CVC4,” in CAV 2011, LNCS 6806.
Springer-Verlag, 2011, pp. 171–177.

[3] A. Cimatti, A. Griggio, B. Schaafsma, and R. Sebastiani, “The Math-
SAT5 SMT Solver,” in TACAS 2013, LNCS 7795. Springer-Verlag,
2013.

[4] L. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in
TACAS 2008, LNCS 4963. Springer-Verlag, 2008, pp. 337–340.

[5] J. Christ, J. Hoenicke, and A. Nutz, “Smtinterpol: an interpolating
smt solver,” in Model Checking Software (SPIN Workshop 2012),
LNCS 7385. Springer-Verlag, 2012, pp. 248–254.

[6] R. Bruttomesso, E. Pek, N. Sharygina, and A. Tsitovich, “The OpenSMT
Solver,” in TACAS 2011, LNCS 6605. Springer-Verlag, 2011, pp. 150–
153.

[7] P. E. Gill, W. Murray, and M. H. Wright, Numerical linear algebra and
optimization. Vol. 1. Redwood City, CA: Addison-Wesley Publishing
Company, 1991.

[8] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[9] A. Schrijver, Theory of Linear and Integer Programming. John Wiley
& Sons, 1989.

[10] R. Niewenhuis, A. Oliveras, and C. Tinelli, “Solving SAT and SAT
modulo theories: From an abstract Davis-Putnam-Logemann-Loveland
procedure to DPLL(T),” JACM, vol. 53, no. 6, pp. 937–977, November
2006.

[11] B. Dutertre and L. de Moura, “Integrating Simplex with DPLL(T),”
Computer Science Laboratory, SRI International, Tech. Rep. SRI-CSL-
06-01, May 2006.

[12] L. de Moura, N. Bjørner, and C. Wintersteiger, “Z3 Source Code v4.3.1
select_pivot,” http://z3.codeplex.com/SourceControl/changeset/
view/89c1785b73225a1b363c0e485f854613121b70a7#src/smt/theory
arith core.h.

[13] A. Griggio, “An Effective SMT Engine for Formal Verification,” Ph.D.
dissertation, DISI - University of Trento, December 2009.

[14] R. Bruttomesso, S. Fulvio Rollini, N. Sharygina, and A. Tsitovich,
“OpenSMT Source Code r64,” http://opensmt.googlecode.com/svn/
trunk/src/tsolvers/lrasolver/LRASolver.C.

[15] D. Detlefs, G. Nelson, and J. B. Saxe, “Simplify: A Theorem Prover for
Program Checking,” JACM, vol. 52, no. 3, pp. 365–473, May 2005.

[16] H. Rueß and N. Shankar, “Solving linear arithmetic constraints,” SRI
International, Tech. Rep. SRI-CSL-04-01, 2004.

[17] G. Badros, A. Borning, and P. Stuckey, “The Cassowary linear arithmetic
constraint solving algorithm,” ACM Transactions on Computer-Human
Interaction (TOCHI), vol. 8, no. 4, pp. 267–306, December 2001.

[18] D. Monniaux, “On using floating-point computations to help an ex-
act linear arithmetic decision procedure,” in CAV 2009, LNCS 5643.
Springer-Verlag, 2009, pp. 570–583.

[19] D. Caminha Barbosa de Oliveira and D. Monniaux, “Experiments on
the feasibility of using a floating-point simplex in an SMT solver,” in
Workshop on Practical Aspects of Automated Reasoning (PAAR). CEUR
Workshop Proceedings, 2012.

[20] G. Faure, R. Nieuwenhuis, A. Oliveras, and E. Rodrı́guez-Carbonell,
“Sat modulo the theory of linear arithmetic: Exact, inexact and com-
mercial solvers,” in SAT 2008, pp. 77–90.

[21] U. Junker, “QuickXplain: Conflict detection for arbitrary constraint prop-
agation algorithms,” in IJCAI-01 Workshop on Modelling and Solving
Problems with Constraints, 2001.

[22] R. B. Bruttomesso, D. Cok, and A. Griggio, “Smt-comp 2012,” Jun.
2012. [Online]. Available: http://smtcomp.sourceforge.net/2012/

[23] C. Barrett, A. Stump, and C. Tinelli, “The Satisfiability Modulo Theories
Library (SMT-LIB),” www.SMT-LIB.org, 2010.

[24] M. Latendresse, M. Krummenacker, M. Trupp, and P. D. Karp,
“Construction and completion of flux balance models from pathway
databases,” Bioinformatics, vol. 28, p. 38896, 2012.

