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Abstract. Satisfiability Modulo Theories (SMT) solvers have been developed to
natively support a wide range of theories, including linear arithmetic, bit-vectors,
strings, algebraic datatypes and finite sets. They handle constraints in these the-
ories using specialized theory solvers. In this paper, we overview the design of
these solvers, specifically focusing on theories whose function symbols are parti-
tioned into a base signature and an extended signature. We introduce generic tech-
niques that can be used in solvers for extended theories, including a new context-
dependent simplification technique and model-based refinement techniques. We
provide case studies showing our techniques can be leveraged for reasoning in an
extended theory of strings, for bit-vector approaches that rely on lazy bit-blasting
and for new approaches to non-linear arithmetic.

1 Introduction

A growing number of formal methods applications leverage SMT solvers as reasoning
engines. To accommodate the unique requirements of these applications, a number of
new theories are now natively supported by SMT solvers, including unbounded strings
with length constraints [39, 31], algebraic datatypes [33], finite sets [5], and floating-
point arithmetic [13]. Solvers for these theories share functionalities, such as reporting
conflicts and propagations based on theory reasoning. From both a formal and an engi-
neering perspective, there is a need to express the common features in these solvers.
This paper focuses on theories whose function symbols can be partitioned into a
base signature X® and an extension signature X°. We will refer to such theories as
extended theories. The motivation for considering extended theories is two-fold:

1. Assume we have developed a constraint solving procedure for some XP"-theory,
and say we want to extend this procedure to handle additional symbols in some
signature X°. Can we reuse our procedure for X"-constraints in part to develop a
procedure for X® U X*-constraints?

2. Assume we want to optimize a procedure for X'-constraints. One way is to partition
its signature X into X U X°, where X contains the symbols that are easier to
reason about. Can we use a stratified approach that first uses our existing procedure
on XP-constraints and reasons about £°-constraints only when needed?

We develop an approach for handling extended theories can be used for answering
both of these questions. This paper observes that the design of many theory solvers for
extended theories follows a similar pattern. First, we observe that it is often possible to



reduce extended constraints to basic ones by reasoning modulo the equalities entailed
by the current assignment. As a simple example, in the context where y ~ 2 is entailed
by the current assignment, the non-linear constraint * X y + y > 5 can be simplified
to a linear one 2 x x > 3. We refer to this technique as context-dependent simplifica-
tion. Constraints that are not reducible in this way can be handled by techniques that
follow the common paradigm of model-based abstraction refinement, where basic con-
straints can be used to refine the abstraction of extended terms. The latter is an approach
followed used by several recent approaches to SMT solving [15, 17].

In previous work, we showed that techniques based on simplification can signifi-
cantly improve the performance of DPLL(T)-based string solvers [34]. In this work:
we formalize the design of theory solvers with extensions, specifically:

— we introduce a generic technique, which we call context-dependent simplification,
which can reduce extended constraints to basic ones and propagate equalities be-
tween extended terms;

— we define a generic approach for extended theories that leverages this technique and
others to implement modular extensions for the theories of strings, linear arithmetic
and bit-vectors, showing that:

e context-dependent simplification techniques significantly improve the perfor-
mance and precision of our solver for an extended theory of strings;

o lightweight techniques based on context-dependent simplification and model-
based refinement can extend DPLL(T") linear arithmetic solvers to handle non-
linear arithmetic and have some advantages over state-of-the-art solvers; and

o the performance of bit-vector solvers can be improved by delaying bit-blasting
of certain functions that require sophisticated propositional encodings.

1.1 Formal preliminaries

We assume the reader is familiar with the following notions from many-sorted logic
with equality: (sorted) signature, term, literal, formula, clause, free variable, interpreta-
tion, and satisfiability of a formula in an interpretation (see, e.g., [11] for more details).
We consider only signatures 3 that contain an (infix) logical symbol ~ for equality.
We write ¢ % s as shorthand for =t ~ s. We write Lit(p) to denote the set of liter-
als of formula . We extend these notations to tuples and sets of terms or formulas as
expected.

If ¢ is a X-formula and Z a X-interpretation, we write Z |= ¢ if Z satisfies . If ¢
is a term, we denote by Z(¢) the value of ¢ in Z. A theory is a pair T' = (X, I) where X
is a signature and I is a class of Y-interpretations, the models of T, that is closed under
variable reassignment (i.e., every X-interpretation that differs from one in I only in how
it interprets the variables is also in I). A Y'-formula ¢ is satisfiable (resp., unsatisfiable)
in T if it is satisfied by some (resp., no) interpretation in I. A set I" of X-formulas
entails in T a X-formula ¢, written I =1 ¢, if every interpretation in I that satisfies
all formulas in I satisfies ¢ as well. Two Y '-formulas are equisatisfiable in T' if for
every model A of T that satisfies one, there is a model of 7" that satisfies the other and
differs from .4 at most over the free variables not shared by the two formulas. We say
that I" propositionally entails o, written I |=,, ¢, if I" entails ¢ when considering all
atoms as propositional variables.



Solver (M) : Return one of the following:
Learn(p) where o =01V ...V by, l1,..., 6y C L, 0 =1 ¢, and M }£, ¢
Infer(¢) where M =7 £, £ € M, and £ € L
Sat(M) where M = M
Unknown

Fig. 1. Basic functionality of a theory solver.

2 Theory Solvers

In this paper, we are interested in the design of theory solvers. At an abstract level, a
theory solver for a X'-theory 7T is a terminating procedure specialized in determining
the satisfiability of sets of T-literals, interpreted conjunctively. For our purposes, we
summarize the interface for a theory solver in Figure 1. We view a theory solver as a
procedure Solver that takes as input a set of T-literals M, which we will call a context,
and outputs a value of the following algebraic datatype

type Response = Learn of Clause | Infer of Literal | Sat of Model | Unknown

where Clause, Literal and Model are types respectively for representing clauses, liter-
als and interpretations. If Solver (M) = Sat(M) then M is a finitary representation of
a model of T that satisfies M, hence we will identity the two in the rest of the paper. We
assume that no input context contains both a literal and its negation.

The value returned by Solver can be used in various ways depending on the overall
search procedure. In most SMT solvers, this search procedure is based on variants of
the DPLL(T') procedure [32] where a theory solver for T is used in combination with
a CDCL propositional satisfiability (SAT) solver to determine the satisfiability in 7" of
quantifier-free formulas. In a nutshell, given a quantifier-free formula ¢, this procedure
maintains a set of X'-clauses F equisatisfiable in 7" with ¢, and tries to construct a
context M that is satisfiable in 7" and propositionally entails F. Such context, if it exists,
is a witness of the satisfiability of ¢ in 7. Constructing M and checking its satisfiability
in T is done with the aid of a theory solver Solver.

As indicated in Figure 1, calling a theory solver on a set M of literal may produce
one of four results. In the first case (Learn), the theory solver returns a lemma, clause
 that is valid in 7" and not propositionally entailed by M. This clause may consist of
complements of literals in M, indicating that M is unsatisfiable in 7', or may contain
atoms not in M, indicating to the rest of the DPLL(T) procedure that M needs to be
extended further. In the second case (Infer), the theory solver returns a literal ¢ that is
entailed by the current context M. We assume here that the literals returned by these
calls are taken from a set £ of T-literals that ultimately depends on the original input
formula ¢. In DPLL(T), this typically includes all literals over the atoms occurring
in F, but may include additional ones, for instance, for theory solvers that implement
the splitting-on-demand paradigm [10]. In the third case (Sat), the procedure returns
a (finitary representation) of a model of 7" that satisfies M. In the last case, the theory



solver simply returns Unknown, indicating that it is unable to determine the satisfiability
of M or suggest further extensions.

Using previous results on DPLL(T") [32, 10]), it can be shown that a DPLL(T)
procedure invoking a theory solver Solver based on this interface is:

refutation-sound (i.e., it says an input formula is unsatisfiable in 7" only if it is so),
model-sound (i.e.,, it says an input formula is satisfiable in 7" only if it is so0),
refutation-complete (i.e., it says an input formula is unsatisfiable in 7" whenever it
is so) if Solver never returns Unknown, and

terminating if £ is a finite set.

3 Theory Solvers with Extensions

In this section, we consider a X'-theory T whose signature 2.’ is the union YbyUxeofa
basic signature X® and an extention signature X where X" and X° have the same sort
symbols and share no function symbols. We will refer to the function symbols in X as
basic function symbols, and to those in 2° as extension function symbols.

We are interested in developing a procedure for the T'-satisfiability of a set F of
XY -clauses based on the availability of a theory solver Solve]%, which implements the
interface from Figure 1, for contexts M consisting of XP-literals only. For the purposes
of the presentation, we assume that the variables in F are are from some infinite set X
and we associate to every X-term ¢ over X a unique variable z; not from X which we
call the purification variable fort. If e is a X’-term or formula possibly containing purifi-
cation variables, we denote by X(e) the set {z; & t | z; is a purification variable in e};
we write [e] to denote the expression ec where o is the substitution {z; — ¢ | x; ~
t € X(e)}. We extend these notations to sets of terms or formulas as expected.

Without loss of generality, we assume every extension function symbol f in F oc-
curs only in terms of the form f(x1,...,z,) where x1,...,z, are variables from X.
We let | F] be the result of replacing every term ¢ of this form in F by its purification
variable z;. It is not difficult to show that | F | U X(|F]) is equisatisfiable with F in 7.

Example 1. Assume f € X°. Let F be the set {f(z5,23) = 24, 5 =~ f(z1,22)}.
After replacing f(z5,23) and f(x1,22) with their respective purification variables z;
and zo, say, we get |F| = {z1 &~ x4, 5 = 20} and X(|F]) = {z1 = f(x5,23), 22 =
f(z1,z2)}. Note that [|F|] = F. O

We are interested in developing extended theory solvers which take as input ex-
tended contexts, that is, sets of literals of the form M U X(M), where M a given set of
X/ -literals possibly with purification variables (coming from the purification process for
F). We discuss in the following two generic classes of techniques: context-dependent
simplification and model-based refinement that can be used to develop extended theory
solvers on top of a basic solver.

3.1 Context-Dependent Simplification

We first observe that many theory solvers already have several features of interest han-
dling extended contexts M U X(M), namely they:



1. Compute an equivalence relation over terms 7 (M), where ¢; and ¢ are in the same
equivalence class if and only if M =1 1 = ¢, and
2. Make use of simplified forms t} of X-terms t, where ) =1 t =~ t].

Regarding the first point, a number of theory solvers [31, 26, 33, 5] are developed as
modular extensions of the standard congruence closure algorithm, which builds equiv-
alence classes over the terms in the current context.

Regarding the second point, computing simplified forms for T-literals is advanta-
geous since it reduces the number of cases that must be handled by the procedure for
T'. Moreover, it reduces the number of unique theory literals for a given input, which is
highly beneficial for the performance of DPLL(T")-based solvers since it allows the un-
derlying SAT solver to abstract multiple 7-literals as the same propositional (Boolean)
variable. For example, assuming (z x 2 > 8)] isx > 4, the set {z X 2 > 8, =(x > 4)}
can be simplified to {x > 4, =(z > 4)}, which is already unsatisfiable at the propo-
sitional level. In most SMT solvers, this is determined by simplification and does not
require invoking a theory solver that implements a procedure for arithmetic.

We argue that it is helpful to apply the same simplification technique while taking
into account the equalities that are entailed by M. In detail, let y be a tuple of variables
and s be a tuple of terms from 7 (M) where M =1 y = s. Let o be the substitution
{y — s} which we will refer to as a derivable substitution (in M). For any term ¢, we
have that M =1 t ~ (to)] by definition of simplifications and derivable substitutions.

Reducing Extended Terms to Basic Terms We may derive equalities between extended
terms and basic ones based on simplification. In particular, consider an equality x ~ ¢
from the X(M) component of our context, recalling that ¢ is a X°-term. If (to)| is a
Xb_term, then it must be that M =1 (x ~ t) < (x ~ (to)]). Hence, we may discard
x & t and handle x = (to)] using the basic procedure.

Example 2. Consider the extended theory A of (integer or rational) arithmetic, whose
basic signature ER contains the symbols of linear arithmetic and whose extension sig-
nature X3 contains the multiplication symbol x.LetM = {z =z, y = w+2, w =~ 1}
and X(M) = {x ~ y x y}. Since M |=a y =~ 3, the substitution o = {y — 3} isa
derivable substitution in M. Assuming the simplified form linearizes multiplication by
constants, we have that (y x y)ol = (3 x 3)} = 9 where, observe, 9 is a X}-term.
Thus, we may infer the (basic) equality x ~ 9 which is entailed by M. a

Inferring Equivalence of Extended Terms If two extended terms ¢; and ¢ can be sim-
plified to the same term under a derivable substitution, we can conclude that they must
be equivalent. This is regardless of whether their simplified form is a basic term or not.

Example 3. LetM = {x1 # 29, wr 4.2, y=2-z}and X(M) = {z1 =y Xy, 22 =
w X z} where - denotes linear multiplication (i.e., 2 - z is equivalent to z + z in A).
We have that o = {w — 4 - z, y — 2 - z} is a derivable substitution in M. Moreover,
(yxy)ol=(2-2)x(2-2))d=4-(zxz)=((4-2) x 2)| = (w X z)ol. Thus, we
may infer that x; ~ x5 is entailed by M (which shows that M is unsatisfiable in A). O



We call this class of techniques context-dependent simplification. For theory solvers
that build an equivalence relation over terms, a simple method for constructing a deriv-
able substitution is to map every variable in 7 (M) to the representative of its equiva-
lence class in the congruence closure of M. However, more sophisticated methods for
constructing derivable substitutions are possible, which we will describe later.

3.2 Model-Based Refinement

Note that | F]| is effectively a conservative abstraction of F. A complementary approach
to context-dependent simplification involves then refining this abstraction as needed to
determine the satisfiability of F in 7. We do that based on the model that the basic solver
finds for a context M, which consists of literals from F. Generally speaking, other SMT
theory approaches already rely on some form of model-based refinement [15, 17]. This
section defines this notion according to the terminology used here.

Consider an extended context M U X(M) where context-dependent simplification
does not apply, and moreover the basic theory solver has found that M is satisfied by
some model M of T. If M = X(M), then it is a model of our context. On the other
hand, if M & X(M), then the extended solver may be instrumented to return a clause
that when added to F refines the abstraction by eliminating the spurious model M. We
generate such clauses from refinement lemmas.

Definition 1. Let MU X(M) be an extended context and let M be a model of T satisfy-
ing M. A refinement lemma for (M, X(M), M) is a X°-clause o such that X(M) =7 ¢
and M = . O

Example 4. Let M be the set {z % 0} and X(M) be {z = y x y}. Let M be a model
A satisfying M with M(z) = —1. A refinement lemma for (M, X(M), M) is > 0.
Observe that [z > 0] =y x y > 0is validin T. O

An extended solver that constructs a refinement lemma ¢ for an input context M U
X(M) may return clause [¢] which by construction is valid in 7, as one can show.

The following definition will be useful when discussing how refinement lemmas are
constructed for specific theories.

Definition 2. Let M be a model of T, let M a set of basic constraints. The set:
(M) ={z~t|z~teX(M), LeM, ze V), MIE[0]}
is the relevant inconsistent subset of X(M) with respect to M. O

To compute the relevant inconsistent subset of X(M) with respect to M, we consider
each literal £ € M, and check whether [ ] is satisfied by M. For such literal £o, I, (M)
contains the equalities x ~ ¢ for purification variables x that occur the free variables of
£. Relevant inconsistent subsets are useful because they tell us which variables should
likely appear in refinement lemmas.



SolveT (M U X(M)): Perform the following steps.

1. (Context-Dependent Simplification) Let y, s be terms in 7 (M) such that M =7 y =
s. Let o be the substitution {y — s}.
(a) (Ext-Reduce) If there exists a © = t € X(M) such that s = (to){ is a XP-term
and z & s € L, return Infer(z ~ s).
(b) (Ext-Equal) If there exists x1 ~ t1,x2 & t2 € X(M) such that (t10)] = (t20)]
and x1 & x2 € L, return Infer(z1 = z2).
2. (Basic Procedure) Let r = Solveb(M). If r # Sat(_), return r.

3. (Model-Based Refinement) If r = Sat(M), either:
(a) (Check) return r if M = X(M),
(b) (Refine) return Learn([¢]) for some X°-clause ¢ such that X(M) |=1 @, M
@, and Lit(p) C L
(¢) (Unknown) return Unknown

Fig. 2. A strategy for an extended theory solver.

Example 5. Let M = {z >0,y > 0, z > 0}, X(M) = {z ~ y x z}, and let M be
the model of T satisfying M where M(z) = 3, M(y) = 2, and M(z) = 1. We have
that Z%, (M) = @ since [z > 0] = y x z > 0, which is satisfied by M. On the other
hand, if M is the set {z > 3,y > 0, 2 > 0}, then Z%,(M) = {z ~ y x z} since
[ > 3] = y x z > 3 which is not satisfied by M. Intuitively, this means the value of =
should be refined based on its definition in X(M), which is y X z. A possible refinement
lemma for (M, X(M), M) isthen (y < 3Az~1) =z < 3. O

We will see examples of how refinement lemmas are constructed in Sections 4
through 6, each of which learn XP-formulas that state properties of extended terms
that appear in the relevant inconsistent subset of the current context.

3.3 A Strategy for Extended Theory Solvers

We summarize a strategy, given by Solve?. in Figure 2, for designing a solver to handle
an extended theory. It first tries to apply context-dependent simplification techniques
based on the two kinds of inferences in Section 3.1. Otherwise, it invokes the basic
procedure Solvel% on the basic portion M of our context. If this determines that M is
satisfied by model M, it uses model-based refinement techniques, as described in Sec-
tion 3.2. This will either determine that M is also a model of X(M) in which case it
returns Sat(M), construct a refinement lemma for (M, X(M), M), or return Unknown.
As mentioned, implementations of model-based refinement vary significantly from the-
ory to theory, and hence our definition of how refinement lemmas are chosen is inten-
tionally left underspecified here.

The next three sections considers examples of DPLL(T) theory solvers that are
designed according to Figure 2. In each section, we provide details on how the steps



in Solve7. are specifically implemented for that theory. We consider an extended theory
of strings, a theory of bit-vectors with a partitioned signature, and the theory of linear
arithmetic extended with multiplication.

4 An Efficient Solver for an Extended Theory of Strings

Recently, SMT solvers have been extended with native support for the theory unbounded
strings and regular expressions. Implementations of these solvers have significant im-
proved in both performance and reliability in the past several years [39, 31, 1]. This
support has enabled a number of applications in security analysis, including symbolic
execution approaches that reason about strings as a built-in type [34].

Consider the extended theory of strings whose signature X's contains a sort Str for
character strings and a sort Int for integers. We partition the function symbols of this
signature in two parts. The base signature Eg’ contains the standard symbols of linear
integer arithmetic, words constructed from a finite alphabet A, string concatenation
con and string length len. The extension signature /¢ contains four function symbols
whose semantics are as follows in every model of the theory. For all z,y, z, n, m, the
term substr(x, n,m) is interpreted as the maximal substring of x starting at position n
with length at most m, or the empty string if n is an invalid position; contains(x, y) is
interpreted as true if and only if string = contains string y; idof (z, y, n) is interpreted as
the position of the first occurrence of y in z starting from position n, or —1 if y is empty,
n is an invalid position, or if no such occurrence exists; repl(z,y, z) is interpreted as
the result of replacing the first occurrence in x of y by z, or x if x does not contain y.

We describe our approach for this extended theory of strings in terms of the three
steps outlined in Figure 2.

Procedure for Eg—constraints In previous work [31], we developed an efficient calcu-
lus for the satisfiability of quantifier-free strings with length constraints. The calculus
handles Eg—constraints (but not X/¢-constraints), and also includes partial support for
regular expressions. The calculus is implemented as a theory solver in CVC4. At a high
level, this solver infers equalities between string variables based on a form of unifica-
tion (e.g., it infers  ~ z when con(x,y) = con(z,w) and lenz = len z are both in
M), returns splitting lemmas based on the lengths of string terms and derives conflicts
for instance when it can infer an equality between distinct character strings. The decid-
ability of strings constraints, even in the basic signature that includes length constraints,
is an open problem [24]. Nevertheless, the calculus from [31] is sound with respect to
models and refutations, and terminates often for constraints that occur in applications.

Context-dependent simplification Functions in the extended signature of strings are a
clear target for context-dependent simplification, due to the complexity of their seman-
tics and the multitude of simplifications that can be applied to extended string terms.
Examples of non-trivial simplifications for extended string terms include:

contains(con(y, z,abc), con(z,a))l =T contains(abcde, con(d, z,a))| = L
contains(con(a, z),con(b, z,a))l = L repl(con(a, z), b, c)] = con(a, repl(z, b, c))
idof(con(a, z, b),b,0)] = 1 4 idof(x, b, 0) repl(z,a,a)l =



[x = substr(y,n,m)] = ite( 0 <n <leny A0 < m,
y = con(z1,m,22) Alenz & n Alenzs ~ leny—m,x ~ )
[x =~ contains(y,z)| = (z % T) & /\ff:0 n <leny — len z = —[z ~ substr(y,n,len 2)]
[x = idof(y, 2,n)] = [21 ~ substr(y, n,leny — n)]|A
ite(0 <nAzzeA[T =~ contains(z1, 2)],

[z ~ substr(z1,z — n,len z)]A
[L & contains(substr(y’,0,z + lenz — (n + 1)), 2)],z ~ —1)

[x =~ repl(y, z,w)] = ite( z % e A [T = contains(y, z)],
x & con(z1,w, z2) Ay = con(z1, z, 22) A [len z1 = idof(y, z,0)],
TRY)

Fig. 3. Reduction of X's-constraints to Eg—constraints for bounded length K, where z1, z> are
fresh variables. The operation n; —n2 denotes the maximum of n; — ng and 0.

The method for computing the simplified form of extended string terms is around 2000
lines of C++ code in the CvVC4 code base.* Despite the complexity of the simplifier,
computing simplified forms often leads to significant performance benefits, as we dis-
cuss later. In addition to using aggressive rewriting techniques for extended string terms,
it is often advantageous to use methods for constructing derivable substitutions based
on flattening sequences of equalities that involve string concatenation terms. For in-
stance, if M contains « & con(ab, y), y = con(c, z) and z ~ con(de, u), where ab, ¢
and de are string constants, then our implementation computes {2 — con(abcde, u)}
as a derivable substitution in M.

Model-Based Refinement If all string variables are known to have length bounded above
by some concrete natural number K, then reasoning about constraints in the full sig-
nature Yg of the extended theory of strings can be reduced to reasoning about EE—
constraints. Concretely, for any equality of the form = ~ f(z1,...,x,) where f € X¢,
we write [z &~ f(x1,...,2,)] to denote a formula equivalent to x ~ f(z1,...,2,)
based on the recursive definition in Figure 3. The size of [ ~ f(z1,...,z,)] is finite
since the reduction replaces extended terms with simpler ones based on a well-founded
ordering over extended string functions. Our model-based refinement for the extended
theory of strings chooses some x = ¢ in the relevant inconsistent subset I}(A(M) and
returns a lemma of the form (z =~ t) < [z = t]. The lemmas we learn by this form re-
quire us to fix a bound K on the length of strings. Although not shown here, this can be
done in an incremental fashion by reasoning about bounded integer quantified formulas,
that is formulas of the form Vk.0 < k < t = ¢, where ¢ does not contain k and ¢ is
quantifier-free. Such formulas can be handled in an incomplete way by guessing upper
bounds on the value of ¢, and subsequently applying finite instantiation as needed [34].

Similar techniques are used in a number of approaches to the extended theory of
strings [12], which perform this reduction to basic constraints eagerly. In contrast to

4 See [34] for more details.



PyEx-c (5557)|PyEx-z3 (8399) | PyEx-z32 (11430)| Total (25386)
Solver # time # time # time # time
cved+sm |5485 52m |11298 2h33m (7019  1h43m (23802 5h8m
cved+m (5377 1h8m |10355 2h29m [6879 3h6m 22611 6h44m
z3 4695 2h44m | 8415 5h18m |6258 3h30m [19368 11h33m
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Fig.4. Table of results of running each solver over benchmarks generated by PyEx, where all
benchmarks were run with a 30 second timeout. The cactus plot shows the cumulative runtime
taken by each of the four configurations over all benchmarks from the three sets.

those approaches, we perform this reduction in a model-based manner, and only when
reasoning by context-dependent simplification does not suffice.

Example 6. Let M be {z ~ 1,y = abc, z = con(b,w,a)} and X(M) be { =
contains(y, z)}, where a, b and abc are string constants. The substitution 0 = {y —
abc, z = con(b,w, b)} is a derivable substitution in M. Moreover, contains(y, z)o| =
contains(abc, con(b, w,b))] = L with L a basic term. Thus, using context-dependent
simplification, we may infer that « /s contains(y, z) is equivalent to = ~ L in this con-
text. This allows us to avoid constructing the refinement lemma x ~ contains(y, z) <
[x & contains(y, z)] according to Figure 3. O

Evaluation We considered 25,386 benchmarks generated by PyEx, an SMT-based sym-
bolic execution engine for Python programs which is a recent extension of PyExZ3 [4].
These benchmarks heavily involve string functions in the extended signature. We com-
pare our implementation in the SMT solver CvC4 [7] against Z3-STR [39] and 73 [19],
both of which use eager reductions to handle extended string functions. We tested two
configurations of CvC4. The first, cve4+m uses model-based refinement techniques (m)
for reducing constraints over extended string terms to basic ones. The second, cved+sm
additionally uses context-dependent simplification techniques (s) which, following Fig-
ure 2, are applied with higher priority than the model-based refinement techniques.’
The results are shown in Figure 4 for three sets of benchmarks, PyEx-c, PyEx-z3
and PyEx-z32. These benchmarks were generated by PyEx on functions sampled from
popular Python packages (httplib2, pip, pymongo, requests) using CVC4, Z3 and Z3-
STR as a backend solver respectively. The results show that cved+sm has better overall
performance than the other solvers, solving 23,802 benchmarks while taking a total of

> For details on our experiments, see http://cvcé.stanford.edu/papers/FroCoS2017-ext.
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(Sign) t1 ~1 0Nt ~2 0 =2 ~0
(Magnitude) | £y [~1|s1| A |tz |~2]s2|=]z|~|(s1 X s2)| where (s1 X s2)l € T(X(M))
(Multiply) t1 ~1 pAta ~2 0=z ~ (t2 X p) where deg(t1) > deg(p) and
(t1 ~1p)l eM

Fig.5. Templates for model-based refinement lemmas for x ~ t; X t2, where t1, t2, s1, 52 are
monomials, p is a polynomial, ~1,~2,~ € {2, >, <, <, >}, | t| is shorthand for the if-then-
else term ite(t > 0, ¢, —t), and deg(t) denotes the degree of .

5 hours and 38 minutes on benchmarks it solves. This is 1,193 more benchmarks that
Ccvc4 with context-dependent simplification disabled, indicating that context-dependent
rewriting is a highly effective technique for this set. With respect to its nearest com-
petitor z3, which took 11 hours and 33 minutes on the 19,368 benchmarks its solves,
cved+sm solved its first 19,368 benchmarks in 1 hour and 23 minutes, and overall solves
a total of 4,434 more benchmarks.

5 Lightweight Techniques for Non-Linear Arithmetic

In this section, we consider an extended theory of (real or integer) arithmetic A whose
signature Y is partitioned so that X} contains the basic symbols of linear arithmetic,
and 23 contains the variadic multiplication symbol x. In the following, a monomial
refers to a flattened application of multiplication z; X ... X xz,, where x1, ..., x, are
(not necessarily distinct) variables. The obvious motivation for this partitioning is that
SMT solvers implement efficient decision procedures for linear arithmetic, but their
support for non-linear arithmetic is limited (and is necessarily incomplete for integer
arithmetic). We outline our approach according to the steps in Figure 2.

Basic Procedure for XX-constraints. Many efficient solvers for linear arithmetic in
DPLL(T')-based SMT solvers are based on work by de Moura and Dutertre [22]. Ap-
proaches for linear arithmetic in our solver CvC4 are described in King’s thesis [29].

Context-dependent simplification. For arithmetic, context-dependent simplification al-
lows us to “linearize” non-linear terms by straightforward evaluation of constant factors.
To start, all literals are normalized to atoms of the form p ~ 0 where ~ is a relational
operator and p is a sum of terms of the form c- z; x ... X x,, with c a concrete integer
or rational constant and 1 X ... X x,, a monomial. Note a term in this sum is a basic
if m < 1. To construct derivable substitutions for a given set of linear equalities M,
we use a technique inspired by Gaussian elimination that finds a set of variables that
are entailed to be equal to constants based on the equalities in M. For example, if M
contains = + y ~ 4 and y ~ 3, then {z — 1,y — 3} is a derivable substitution in M.

Model-Based Refinement. Differently from the theory strings, there is no finite reduc-

tion from extended constraints to basic ones for the theory of arithmetic. Instead, our
approach for model-based refinement technique for equalities x ~ ¢ in our relevant
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inconsistent subset of X(M), where ¢ is a monomial, adds lemmas that help refine the
value of x in future models by stating various properties of multiplication. We see ¢
as decomposed into the product t; X to of two monomials. Figure 5 lists three basic
templates we use for generating refinement lemmas based on x ~ t; X to. This list is
not comprehensive, but represents the three most commonly used lemma templates in
our implementation.

Suppose we have a model M for our set of basic constraints M. Let ¢ be a formula
that is an instance of one of the templates in Figure 5, meets the side conditions in the
figure (if any), and is such that [¢] = @{x — ¢; X 2} is a valid formula in theory A.
Notice that ¢ is a refinement lemma for (M, X(M), M) if M F~ . For the first two
lemmas, ¢ is equivalent to a formula whose literals are either of the form u; ~ wus,
where ~ is one of {~, > <, <, >}, and for ¢ = 1,2, the term w; is either 0, or a
monomial of the form x; x ... x z,, where for each j = 1,...,n, x; is a variable
from V(X(M)). Only a finite number of literals of this form exist. Thus, all refinement
lemmas generated using the first two templates are built from a finite set of literals L.
A more detailed argument can show that lemmas generated from the third template are
built from a finite set of literals as well. This fact suffices to argue that our extended
solver will generate only a finite number of refinement lemmas for a given context M
which is enough for termination in DPLL(7"). However, it is not enough for refutation
completeness in A since one may need refinement lemmas that are not an instance of
these templates.

Example 7. Let M = {z < 0,y > z} and X(M) = {& ~ y x z}. Let M be a model
of M where M(x) = —1, M(y) = 3 and M(z) = 2. The relevant inconsistent subset
ZX,(M) contains z ~ y x z. The formula ¢ = (y > 0 Az > 0) = x > 0 is an instance
of first template in Figure 5, and [¢] = (y > 0A 2z > 0) = y x z > 0 is valid in A.
Since M =y > 0 Az > 0but M [~ x > 0, we have that ¢ is a refinement lemma for
(M, X(M), M). Returning [¢] as a learned clause has the effect of ruling out a class of
models that includes M in subsequent states. ad

Example 8. Let M = {y > 3,z > y,z < 3-z— 1} and X(M) = {z = y x z}.
Let M be a model of M where M(y) = 4, M(z) = 5 and M(z) = 3, where again
(z ~ yxz) € I4(M). The formula ¢ = (y > 3Az > 0) = x > 3-z is an instance of
the third template in Figure 5, and [¢] = (y > 3Az > 0) = y x z > 3-zisvalidin A.
Since M =y >3Az>0but M [~ x >3-z we have that ¢ is a refinement lemma
for (M, X(M), M). Returning [¢] as a learned clause suffices to show this context is
unsatisfiable. O

Evaluation We considered all benchmarks of the SMT-LIB library [9] that contain non-
linear real (QF_NRA) and non-linear integer (QF_NIA) quantifier-free problems. We
evaluated two configurations of CVC4: cved+sm and cved+m. The first configuration
implements both context-dependent simplification (based on linearizing variables that
are entailed to be equal to constants), and model-based refinement lemmas (Figure 5),
whereas the second implements model-based refinement only.

The results are presented in Figure 6. On the QF_NRA problems, we compared
Cvc4 with 73, YICES2 [21], and RASAT [37]. RASAT is an incomplete interval based
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QF_NIA | aprove | calypto |Iranker | Ictes | leipzig | mcm |uauto |ulranker| Total

# time| # time| # time|# time| # time| # time|# time| # time # time
yices 8706 1761|173 83| 98 102 92 30| 4 32{7 32 11(9112 2021
23 8253 7636|172 146| 93 767 157 173{16 180(7 3243|8730 8947
cved+m (8234 4799|164 43111 52 69 589 0 0|6 3284|8617 5569
cved+sm|8190 3723|170 61108 57 68 375| 3 107(7 3286|8579 4413
AProVE 8028 3819| 72 110 3 2 157 169| 0 0|0 6 418266 4106

O = OO
S OO OO
o= O OO

QF_NRA| hong | hycomp |kissing| Iranker | mtarski | uauto | zankl Total

# time # time| # time| # time # time| # time| # time # time
z3 9 16|2442 3903|127 443|235 1165|7707 370|60 175|87 23|10567 6098
yices 7 59(2379 594/10 213 3110({7640 707|50 210|91 61|10390 4744
raSat |20  1[1933 409({12 32| O 0/6998 504| 0 0[54 52| 9017 999
cved+sm (20 0(2246 718 5 0/623 8375|5434 3711{11 31|33 36| 8372 12874
cved+m (20 0(2236 491| 6 603 6677|5440 3532|110 33|31 25| 8346 10761

(=]
W

(=]

Fig. 6. Results for benchmarks in the QF_NIA and QF_NRA logics of SMT-LIB. All experiments
are run with a 60 second timeout. Time columns give cumulative seconds on solved benchmarks.

solver, while both Z3 and YICES2 are complete solvers based on NLSAT [28] (with
YICES2 relying on the more recent variant called MCSAT [20]). Note that NLSAT and
the underlying algorithms are highly non-trivial and not based on DPLL(T"), making
integration with DPLL(7")-based solvers such as CvC4 impossible.

Although our method is incomplete, overall CvC4 solves an impressive fraction of
SMT-LIB problems. The first interesting observation is that CvC4 solves all instances
in the hong problem set. These are problems that are know to be hard for the meth-
ods underlying Z3 and YICES2, but easy for solvers based on interval reasoning such
as RASAT. Note that cvc4 does not directly employ any interval reasoning, and the
extra deductive power comes as a side-effect of model-based refinement. Another pos-
itive result is that CvC4 solves most problems in the Iranker [30] and uauto problem
sets. CVC4’s perfomance on these problems which come from invariant generation [18],
show that our proposed methods work well on practical problems. An example of a
class of benchmarks where Cvc4 does not perform well are the mtarski benchmarks
[2]. These benchmarks come from the analysis of elementary real functions and, due
to their high degrees, solving them requires full support for algebraic reasoning. The
results show that our new method is positioned between the incomplete interval-based
methods like those implemented in RASAT, and the complete methods like those imple-
mented in Z3 and YICES2, while performing well on practical problems.

On the QF_NIA problems, we compare CVC4 with Z3, YICES2, and APROVE [25].
The APROVE solver relies on bit-blasting [23], Z3 relies on bit-blasting aided with lin-
ear and interval reasoning, while YICES2 extends NLSAT with branch-and-bound [27].
Both versions of cvC4 perform well, especially considering that we do not rely on
bit-blasting or sophisticated non-linear reasoning. Again, on the Iranker and ulranker
problem sets the new method in CvC4 excels, solving the highest number of problems.
Overall, cved4+m proves 812 problems unsatisfiable, and cved+sm proves 825 problems
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unsatisfiable, while YICES2, 3, and APROVE can show 975, 485 and 0 problems unsat-
isfiable, respectively. Focusing on unsatisfiable problems, our results show that the new
method is positioned between the incomplete bit-blasting-based solvers like APROVE,
and more sophisticated solvers like YICES2.

6 Lazy Bit-blasting for Bit-vector Constraints

In this section, we present our preliminary work on a stratified approach for solving bit-
vector constraints. We consider the theory of fixed-width bit-vectors whose signature
contains a bit-vector sort BV,, for each n > 0, and a variety of functions that are used to
encode bit-level arithmetic and other operations [8]. A common method for constraints
in this theory is to eagerly reduce bit-vector constraints to propositional ones, where this
method is often called bir-blasting. However, certain bit-vector functions require fairly
sophisticated propositional encodings which may degrade the performance of the SAT
solver that reasons about the bit-blasted form of the problem. Thus, we consider a theory
of bit-vectors whose signature is partitioned such that its extended signature contains
the symbols for bit-vector multiplication (bvmul), unsigned and signed division (bvudiv
and bvsdiv), unsigned and signed remainder (bvurem and bvsrem), and signed modulus
(bvsmod). All other symbols are assumed to be in the basic signature.

Procedure for X8, -constraints In previous work [26], Hadarean et. al. developed lazy
techniques for a theory of fixed width bit-vectors. In their approach, the solver resorts to
bit-blasting only when algebraic approaches do not suffice to establish satisfiability. The
solver may use algebraic reasoning to infer additional equalities, for instance based on
specialized reasoning about inequalities, bit-shifting, or concatenation and extraction.
If M is still satisfiable, then the solver resorts to bit-blasting. In other words, for each
£ € M N L, the solver learns the formula ¢ < B(¢), where B(¢) is the propositional
encoding of bit-vector literal £.

Context-dependent simplification Competitive modern solvers including CvC4 use ag-
gressive simplification techniques for the theory of bit-vectors which we leverage in the
first step of Figure 2. Our technique for constructing derivable substitutions is based on
mapping variables x to bit-vector constants that occur in the same equivalence class as
x in the congruence closure of M.

Model-Based Refinement Our model-based refinement techniques chooses a x ~ ¢ in
ZX((M) and learns = = t < B(z = t), where B(z ~ t) is the propositional encoding
of = t. In other words, we bit-blast constraints from X(M) at lower priority than
constraints in M, and only if they appear in our relevant inconsistent subset.

Evaluation We provide a preliminary evaluation of a new version cve4+sm whose
signature is partitioned according to this section and that implements both context-
dependent simplification and model-based refinement techniques, and compared this
with the default configuration of cvc4 with lazy bit-blasting from [26] that does not
consider the partitioned signature. We ran both on the sage2 family of benchmarks
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from the QF_BYV division of SMT LIB [9]. Overall, cved+sm solved 11415 benchmarks
compared to 11256 solved by cved. While these results are not competitive with state-
of-the-art eager bit-blasting techniques such as those in Boolector [14] which solves
13549, we believe these results are encouraging due to the simplicity of the implemen-
tation and orthogonality with eager bit-blasting approaches, as cve4+sm solved 2171
benchmarks in this set not solved by Boolector.

7 Related Work

A common way to support extensions of theories is to provide first-order axiomatiza-
tions of additional symbols in the signature of the extension. One can show decision
procedures for theory extensions exist, given a finite instantiation strategy [35, 6]. In
contrast, the approaches we develop are specialized to particular extensions, and thus
have specific advantages over an axiomatic approach in practice.

The idea of using inconsistent (partial) models that guide the learning of new facts
is not new. For example, the CDCL algorithm of modern SAT solvers learns clauses to
eliminate inconsistent assignments; branch-and-bound in integer programming learns
lemmas to eliminate real solutions; and the decision procedure for the theory of ar-
rays [15] generates expensive array lemmas based on the current model. The MCSAT
approach to SMT, as another example, [20] is based entirely on the interplay of mod-
els and lemmas that refute them. Although our approach is similar in spirit, our goals
are different. All mentioned approaches are targeting concrete theories where satura-
tion with lemmas is complete and the models are used to guide control the saturation.
Our approach, on the other hand, targets generic theories where a decision procedure
is either not available or incompatible with DPLL(T"). The advantage of the presented
framework is that reasoning in complex theories can be achieved by relying on existing
DPLL(T’) technology supported by the majority of existing SMT solvers (solving the
base theory, relying on equality reasoning and simplification), and very little additional
engineering effort to generate relevant refinement lemmas.

A number of SMT solvers support string reasoning [39, 31, 36, 1]. Techniques for
extended string constraints [12, 39, 36] rely on eager reductions to a core language of
basic constraints. To our knowledge, no other string solvers leverage context-dependent
simplification. Recent lightweight approaches for non-linear arithmetic constraints have
been explored in [3, 17]. Current state-of-the-art approaches for bit-vectors rely on ea-
ger bit-blasting techniques with approaches.An earlier approach for lazy bit-blasting
was proposed by Bruttomesso et. al [16]. A recent approach for bit-vectors uses lazy
bit-blasting based on the MCSAT framework is given by Zeljic et al [38].

8 Conclusion and Future Work

We have presented new approaches for handling constraints in the theories of strings,
bit-vectors, and non-linear arithmetic. The common thread in each of these approaches
is to partition the signatures of these signatures into a basic and extended parts, and treat
constraints in the extended signature using context-dependent simplification and model-
based refinement techniques. Our evaluation indicates that these techniques are highly
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effective for an extended theory of strings and give CvC4 some advantages with the
state-of-the-art for non-linear arithmetic. Our preliminary results suggest the approach
may be promosing for bit-vectors as well.

We plan use these techniques in part to develop further theory extensions that would
be useful to support in SMT solvers. Other extensions of interest worth pursuing in-
clude a stratified approach for floating-point constraints, commonly used type conver-
sion functions (e.g. bv_to_int, int_to_str), and transcendental functions.
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